پاسخ فعالیت صفحه 60 فصل 3 ریاضی یازدهم تجربی | پادرس
 

پاسخ فعالیت صفحه 60 فصل 3 ریاضی یازدهم تجربی

  • هوش مصنوعی
  • تصویر حل تشریحی و گام به گام پاسخ فعالیت صفحه 60 فصل 3 ریاضی یازدهم تجربی

    پاسخ هوش مصنوعی به پاسخ فعالیت صفحه 60 فصل 3 ریاضی یازدهم تجربی

    در شکل داده شده، با وصل کردن نقاط مشخص شده به هم، نموداری رسم کنید که تابع باشد. الف) آیا تابعی که رسم کرده‌اید یک به یک است؟ ب) با کامل کردن عبارت زیر مشخص کنید که چگونه با در دست داشتن نمودار یک تابع، می‌توان تشخیص داد که آیا آن تابع یک به یک است یا خیر؟

    نقاط مشخص شده روی نمودار عبارتند از: $$(-5, 1), (-2, 1), (-1, 3)$$ ## الف) تابع و یک به یک بودن **۱. رسم نمودار تابع**: با وصل کردن این نقاط به یکدیگر، یک نمودار خط شکسته به دست می‌آید. این نمودار **تابع** است، زیرا هر خط عمودی (Vertical Line Test) آن را حداکثر در یک نقطه قطع می‌کند. **۲. بررسی یک به یک بودن (آزمون خط افقی)**: تابع زمانی **یک به یک** است که هر خط افقی (Horizontal Line Test) نمودار آن را **حداکثر در یک نقطه** قطع کند. * **نقاط $(-5, 1)$ و $(-2, 1)$** هر دو دارای **مؤلفهٔ دوم یکسان** ($y=1$) هستند. * خط افقی $y=1$ نمودار را در دو نقطه قطع می‌کند. $$\text{جواب}: \text{خیر، این تابع **یک به یک نیست**، زیرا مقادیر } x = -5 \text{ و } x = -2 \text{ به یک مقدار } y = 1 \text{ نگاشته شده‌اند.}$$ --- ## ب) معیار تشخیص یک به یک بودن از روی نمودار $$\text{با در دست داشتن نمودار یک تابع، می‌توان تشخیص داد که آیا آن تابع یک به یک است یا خیر، اگر هر خط } \mathbf{\text{افقی}} \text{، نمودار آن تابع را حداکثر در } \mathbf{\text{یک نقطه}} \text{ قطع کند (آزمون خط افقی).}$$

    کدام یک از توابع زیر یک به یک است؟

    برای تشخیص یک به یک بودن یک تابع از روی نمودار، از **آزمون خط افقی** (Horizontal Line Test) استفاده می‌کنیم: اگر هر خط افقی دلخواه، نمودار تابع را **حداکثر در یک نقطه** قطع کند، آن تابع یک به یک است. | نمودار | توصیف | یک به یک است؟ | | :---: | :---: | :---: | | **بالا چپ** (تابع سینوسی) | خطوط افقی، نمودار را در بیش از یک نقطه قطع می‌کنند. | **خیر** | | **بالا وسط** (تابع نمایی کاهشی) | هر خط افقی، نمودار را حداکثر در یک نقطه قطع می‌کند. | **بله** | | **بالا راست** (سهمی رو به بالا) | خطوط افقی در بالای رأس، نمودار را در دو نقطه قطع می‌کنند. | **خیر** | | **پایین چپ** (تابع رادیکالی) | هر خط افقی، نمودار را حداکثر در یک نقطه قطع می‌کند. | **بله** | | **پایین وسط** (تابع خطی کاهشی) | هر خط افقی، نمودار را دقیقاً در یک نقطه قطع می‌کند. | **بله** | | **پایین راست** (نیم‌دایره) | خطوط افقی در بالای مرکز، نمودار را در دو نقطه قطع می‌کنند. | **خیر** | $$\text{توابع یک به یک}: \text{نمودار بالا وسط (نمایی کاهشی)} \text{، } \text{نمودار پایین چپ (رادیکالی)} \text{، } \text{نمودار پایین وسط (خطی کاهشی)} $$

    بهترین‌ها در فیلیمومدرسه 🧡

    برترین معلمان کشور + کارآمدترین روش آموزشی این ترکیب برنده رو از دست نده!

    شما اکنون در حال پاسخ به یکی از کامنت های می باشید

    نام و نام خانوادگی :

    ایمیل :

    سوال امنیتی :

    دو بعلاوه دو

    نظر خود را وارد نمایید :